This is ttv1 code (Timm tools, version 1).
home | discuss | report bug
Ranges implements discretization; i.e. transform quantitative data into qualitative data. Even for algorithms that can directly deal with quantitative data, dscretization can led to faster, more effective learning.
It turns out that a generic recursive bi-clustering procedure can implement all the following discretization processes:
div
: Separate a List into Ranges from ranges import div
#
for rng in div([ 10, 11, 13, 14, 15, 15, 16, 16, 17,
20, 21, 23, 24, 25, 25, 26, 26, 27,
30, 31, 33, 34, 35, 35, 36, 36, 37
]):
print("range,rng["id"],":",
dict(lo= rng["x"].lo,
hi= rng["x"].hi))
# Output
range 1: {'lo': 10, 'hi': 20} # nums 10 to 20
range 2: {'lo': 21, 'hi': 31} # nums 21 to 31
range 3: {'lo': 33, 'hi': 37} # nums 33 to 37
ediv
: Separate pairs of Number,Symbols into Ranges from ranges import div,ediv
#
a,b = "a","b"
for rng in ediv([
(10,a),(11,a),(13,a),(14,a),(15,a),
(20,b),(21,b),(23,b),(24,b),(25,b),
(30,b),(31,b),(33,b),(34,b),(35,b) ]):
print(dict(id= rng["id"],
lo= rng["x"].lo,
hi= rng["x"].hi))
# Output
range 0 : {'lo': 10, 'hi': 20}
range 1 : {'lo': 21, 'hi': 35}
sdiv
: Separate pairs of Number,Numbers into Ranges lst= [( 0.7, 2), ( 0.75, 2 ), ( 0.8, 2 ),
( 0,85 ,2), ( 0.9, 2), ( 0.8 , 2 ),
( 1 , 2 ), ( 1.05 , 2), ( 1,2),
( 0.7, 2), ( 0.75, 2 ), ( 0.8, 2 ),
( 0.85 , 2), ( 0.9, 2), (10 , 14 ),
(10.5, 13.5),(11 ,13), (11.5, 13),
(12 , 12.5),(12.5, 12 ),(13 ,11.5),
(13.5, 10.5),(14 , 10 ),(14.5, 9.5),
(15 , 9), (15.5, 8.5) ]
for rng in sdiv(lst):
print("range",rng["id"],":",
dict(lo= rng["x"].lo,
hi= rng["x"].hi))
# Output
range 0 : {'lo': 0, 'hi': 0.9}
range 1 : {'lo': 0.9, 'hi': 15.5}
ddiv
: Separate lists of Treatment into Ranges for rng in ddv(dict(x1= [0.34, 0.49, 0.51, 0.6],
x2= [0.6, 0.7, 0.8, 0.9],
x3= [0.15, 0.25, 0.4, 0.35],
x4= [0.6, 0.7, 0.8, 0.9],
x5= [0.1, 0.2, 0.3, 0.4])):
print("range", rng["id"],":",
[x[0].label for x in rng["has"]],
dict(lo= rng["x"].lo,
hi= rng["x"].hi))
# Output
range 0 : ['x5', 'x3'] {'lo': 0.1, 'hi': 0.4}
range 1 : ['x1'] {'lo': 0.34, 'hi': 0.6}
range 2 : ['x2', 'x4'] {'lo': 0.6, 'hi': 0.9}
Ranges
assumes that the input data contains a list of doubles (x,y)
pairs. The process assumes x is always numeric, but y may
be numeric or symbols.
To divide a list of numerics, this generates doubles (x,x), after which the same division process executes.
However it runs, this ranges returns a list of dictionaries:
dict(label = label, score = score,
x = xoverall, # x.lo, x.hi defines the range
y = yoverall, # could be numerics or symbols
has = items,
id = aNumber)
import sys,math
from cliffsDelta import cd
from bootstrap import bootstrap
Short-cuts, defined for standard usages.
Standard usage #1: divide a list of numbers.
def div(lst):
return ranges(lst)
Standard usage #2:
def sdiv(lst,
x = lambda z:z[ 0],
y = lambda z:z[-1],
key = lambda z:z[ 0]):
return ranges(lst, key=key, x=x, y=y)
def ediv(lst,
x = lambda z:z[ 0],
y = lambda z:z[-1],
key = lambda z:z[ 0]):
def fayyadIranni(lhs,rhs,all,score):
gain = all.ent() - score
delta = math.log(3**all.k()-2,2) - (all.ke() - lhs.ke() - rhs.ke())
return gain > (math.log(all.n-1,2) + delta)/all.n
return ranges(lst,
ynum=False,
goodysplit=fayyadIranni,key=key, x=x, y=y)
def scottknot(d):
def expectedMuChange(lhs,rhs,all):
return lhs.n/all.n * abs(lhs.median() - all.median())**2 + \
rhs.n/all.n * abs(rhs.median() - all.median())**2
def stats(lhs,rhs,_):
tmp = not cd(lhs.all,rhs.all) and not bootstrap(lhs.all,rhs.all)
print(tmp, lhs.all, rhs.all)
return tmp
lst=[]
for k,v in d.items():
tmp=num(v)
tmp.label= k
lst += [tmp]
return ranges(lst,
flat=False,
d=0.1,
x = lambda z:z.all,
y = lambda z:z.all,
goodxsplit = stats,
evaly = expectedMuChange,
key = lambda z:z.median())
def ddiv(d,f=None):
lst=[]
for k,v in d.items():
tmp=num(v)
tmp.label= k
lst += [tmp]
return ranges(lst,
flat=False,
x = lambda z:z.all,
y = lambda z:z.all,
key = lambda z:z.median())
def ranges(lst,
d = 0.3,
cliffsDelta= 0.147,
enough = None,
enoughth = 0.71,
epsilon = None,
evaly = None,
flat = True,
goodxsplit = None,
goodysplit = None,
greedy = True,
label = "ranges",
rnd = 3,
trivial = 1.05, # 1%
key = lambda z:z,
verbose = False,
x = lambda z:z,
y = lambda z:z,
ynum = True,
):
def expectedWriggle(lhs,rhs,all):
return lhs.n/all.n * lhs.wriggle() + \
rhs.n/all.n * rhs.wriggle()
def yes(*l,**d): return True
evaly= evaly or expectedWriggle
goodxsplit = goodxsplit or yes
goodysplit = goodysplit or yes
def stats(segment, xall, yall,flat):
xs,ys = num(),yklass()
if flat:
for one in segment:
x1 = x(one)
y1 = y(one)
xs + x1
xall + x1
ys + y1
yall + y1
else:
for x1 in segment.all:
xs.label = segment.label
ys.label = segment.label
xs + x1
xall + x1
ys + x1
yall + x1
return xs,ys
def summary(segments):
xall,yall=[],[]
xs, ys = {},{}
for i,(x,y) in enumerate(segments[::-1]):
j = len(segments) - i - 1
xall += x.all
yall += y.all
newx = num(xall)
newy = yklass(yall)
xs[j] = newx
ys[j] = newy
print("!!!",j,newx,newy)
return xs, ys, num(xall), yklass(yall)
def divide(segments, out,lvl, cut=None):
xrhsall, yrhsall, xoverall, yoverall = summary(segments)
score, score1 = yoverall.wriggle(), None
xlhs, ylhs = num(), yklass()
for i,(x,y) in enumerate(segments[:-1]):
xrhs = xrhsall[i+1]
yrhs = yrhsall[i+1]
[xlhs+z for z in x.all]
[ylhs+z for z in y.all]
if xlhs.median() + epsilon < xrhs.median():
score1 = evaly(ylhs,yrhs,yoverall)
if score1*trivial < score:
if yklass == num:
if not greedy or ylhs.median()*trivial < yrhs.median():
if goodxsplit(xlhs,xrhs,xoverall): # hook for stats
cut,score = i+1,score1
else:
if not greedy or ylhs.mode != yrhs.mode:
if goodysplit(ylhs,yrhs,yoverall, score1):
if goodxsplit(xlhs,xrhs,xoverall): # hook for stats
cut,score = i+1,score1
if verbose:
score1 = round(score1,rnd) if score1 else '.'
print(' ..'*lvl,xoverall.n,score1)
if cut:
divide(segments[:cut], out= out, lvl= lvl+1)
divide(segments[cut:], out= out, lvl= lvl+1)
else:
assert xoverall.lo <= xoverall.hi
out.append(dict(label = label, score = score,
x = xoverall,
y = yoverall,
has = segments,id=len(out)))
return out
def chunks(l, n):
for i in range(0, len(l), n): yield l[i:i + n]
if not lst:
return []
else:
lst = lst[:]
yklass = num if ynum else sym
xall, yall = num(), yklass()
width = int(enough or len(lst)**enoughth)
ordered = sorted(lst,key=key)
segments = ordered if not flat else [z for z in chunks(ordered,width)]
parts = [stats(segment, xall, yall,flat) for segment in segments]
epsilon = epsilon or d * xall.wriggle()
return divide(parts,out=[], lvl=0)
class ordered:
def __init__(i,lst):
i.sorted= False
i._median = None
i.all = lst
def __add__(i,x):
i.sorted=False
i.all += [x]
def wriggle(i):
return i.median()
def median(i):
if not i.sorted or not i._median:
i.sorted = True
i.all = sorted(i.all)
n = len(i.all)
p = q = n//2
if n < 3:
p,q = 0, n-1
elif not n % 2:
q = p -1
i._median = i.all[p] if p==q else (i.all[p]+i.all[q])/2
return i._median
class num:
def __init__(i,inits=[]):
i.lo, i.hi, i.n, i.mu, i.m2 = 1e32,-1e32,0,0,0
i.sd = None
i.all = []
i.ordered=ordered(i.all)
[i + x for x in inits]
def __add__(i,x):
i.ordered + x
i.sorted=False
i.lo = min(x, i.lo)
i.hi = max(x, i.hi)
i.n += 1
delta = x - i.mu
i.mu += delta/i.n
i.m2 += delta*(x - i.mu)
if i.n > 1:
i.sd = (i.m2/(i.n-1))**0.5
def wriggle(i):
return i.sd
def median(i):
return i.ordered.median()
def __repr__(i):
return "(:lo %.4f :hi %.4f :n %.4f :med %.4f :sd %.4f)" % (i.lo, i.hi, i.n,i.median(),i.sd)
class sym:
def __init__(i,inits=[]):
i.n, i.most, i.mode, i.counts = 0,0,None,{}
i.all=[]
i._ent=None
[i + x for x in inits]
def __add__(i,x):
i.all += [x]
i.n += 1
i._ent=None
count= i.counts[x] = i.counts.get(x,0) + 1
if count > i.most:
i.most,i.mode=count,x
def wriggle(i): return i.ent()
def ent(i):
if i._ent is None:
i._ent = 0
for k in i.counts:
p = i.counts[k]/i.n
i._ent -= p*math.log(p,2)
return i._ent
def k(i): return len(i.counts.keys())
def ke(i): return i.k()*i.ent()
Copyright © 2016,2017 Tim Menzies tim@menzies.us, MIT license v2.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Share and enjoy.